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Abstract

Phytoplankton blooms are geochemically and ecologically important, but current
understanding of the causes of phytoplankton blooms provides little power to predict
the timing, extent, and distribution of blooms. In this thesis, I discuss the implications
of light limitation for phytoplankton bloom patchiness and community structure by
modeling phytoplankton as reacting tracers in a reaction-advection-diffusion system.
I use non-dimensional parameters to develop general principles of bloom dynamics
with light limitation that can be tested against empirical results. I first develop an
exact Lagrangian model of advection and diffusion with no-flux boundaries to rep-
resent a vertical water column and compare the properties of tracers in that model
to known properties of a tracer in a turbulent mixed layer. I then use both numer-
ical simulations and exact solutions to systematically build towards understanding
the individual interactions between reaction, advection, and diffusion in a reaction-
advection-diffusion system with non-linear source terms. I find that spatially variable
forcing is required to develop patchiness in a reaction-advection-diffusion system. I
also analyze the emergence of temporal heterogeneity in bulk phytoplankton concen-
trations when the ratio of physical and biological timescales is ∼ O(1) and conclude
that non-steady equilibria are due to the degree of spatial heterogeneity as well as to
advection and diffusion rates. Finally, I demonstrate one possible mechanism for an
interaction between light limitation, turbulence, and predator-prey dynamics.
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1 Background

Phytoplankton account for the majority of marine productivity, are a signifi-
cant carbon sink, and a crucial energy resource for marine animals. Major plankton
blooms, such as the spring bloom in the North Atlantic are known to sequester large
amounts of carbon in the oceans. The magnitude and dynamics of plankton blooms
are dependent on environmental conditions such as nutrients, light, temperature, tur-
bulence, and other plankton species. In particular, plankton distribution has been
observed to be spatially variable and this patchiness has been attributed to a number
of factors including both biological processes (birth, death, predation) and physical
mixing [26].

Growing phytoplankton populations can be understood as similar to reactive
chemicals. When the concentration of a population grows or decays through time as
it is being moved by a turbulent fluid the population is called a reacting tracer. Math-
ematical tools have proven useful for understanding the dynamics of reacting tracers,
both chemical and biological, in chaotic fluids. This project touches on a number of
topics from non-linear dynamics, including bifurcation of steady states, with the ratio
between biological reaction rate and stirring rate functioning as a bifurcation param-
eter, and coupled oscillators. Previous studies investigated the role of both advection
and diffusion separately in determining the role of fluid dynamics in generating phy-
toplankton dynamics. Theoretical [6] and numerical approaches [8, 19, 23, 29, 34, 37]
have been used.

The theoretical approach used by Bennett and Denman, which involved dimen-
sional analysis and relied on analyzing variance spectra, found that in mesoscale
eddies, spatial variability of a nutrient, whether that nutrient is advected or not
is sufficient to generate patchiness when using a three dimensional (nutrients, phy-
toplankton, zooplankton) non-linear model for biological dynamics [6]. Subsequent
work specifically on generation of phytoplankton patchiness due to turbulent stir-
ring has largely focused on using numerical simulations to determine what aspects of
theoretical fluid dynamics or biological dynamics are necessary to generate realistic
patchiness in a model. Investigation of the role of advection (rather than diffusion)
led to the insight that the relative rate of biological reactions to stirring processes
can be one controlling factor in generating the spatial patterns of zooplankton and
phytoplankton [1]. More complex numerical studies have found that topographical
features such as islands can cause increased primary productivity by generating vor-
tices that increase the residence time of phytoplankton in high nutrient areas [34].

Chaotic advection can give rise to new phenomena in chemical reaction systems.
In a flame combustion system, chaotic stirring leads to quenching of the reaction. The
quenching occurs at a saddle node bifurcation [28]. The behavior near the bifurcation
depends, as in biological systems, on the ratio between reaction rate and stirring rate,
called the Damkohler number in chemical systems [37]. The rate of progress towards
completion of a reaction can also depend on the characteristics of fluid motion. Tsang
(2009) found that for a bimolecular irreversible chemical reaction, products decayed
exponentially, with the rate scaling with the Lyapunov exponent of the fluid, until
nearing completion, when the system follows algebraic chemical kinetic rate laws [38].
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Tsang (2009) was also able to apply the theory of passive scalars to understanding
the system by investigating the limits of large and small Damkohler numbers.

Physical forcing is commonly invoked to explain the rapid accumulation of biomass
that characterizes phytoplankton blooms, but a number of different mechanisms for
the influence of turbulence on bloom formation have been proposed. Mathematical
modeling is a useful tool for translating theoretical models of bloom formation into
testable predictions [16, 20,25,36].

Traditionally, the mixed layer depth, the depth of the ocean surface layer that
is characterized by vertically homogenous density, was thought to control bloom dy-
namics through its effect on light exposure. Sverdrup hypothesized in what is known
as the “critical depth hypothesis” that bloom onset occurs when the upper ocean
warms and stratifies such that the thermocline is at a critical depth, defined as the
depth at which net production of plankton, integrated over the whole mixed layer is
equal to net loss, integrated over the whole mixed layer [35]. Production is thought to
vary with depth, since light availability is reduced deeper in the water column, while
loss is assumed to be constant with depth. This hypothesis assumes that plankton
are uniformly distributed through the mixed layer and that active mixing occurs in
the entire mixed layer such that phytoplankton are exposed to all light levels in the
water column. Subsequent work suggested that not only does the mixed layer control
productivity, but that the relative rate at which turbulent mixing and growth occur
can also control bloom initiation. The “critical turbulence hypothesis” posits that
slow turbulence can allow for a bloom even when active mixing is below the critical
depth. The critical turbulence hypothesis preserves some of the assumptions of the
critical depth hypothesis, particularly that growth depends on light exposure and
varies with depth and that the loss rate is constant with depth. However, crucially,
it does not require a uniform vertical distribution in phytoplankton biomass. When
slow turbulence allows for a bloom before restratification, biomass will be highest at
the top of the water column.

Previous numerical and analytical studies designed to test the critical turbulence
hypothesis have used one-dimensional domains. They have generally used physical
set-ups with a constant turbulent diffusivity and model light as a step function, with
positive constant growth in one part of the domain and no growth in the other. In
terms of biological models, they have modeled growth as exponential with the growth
rate a function of depth and include gravitational sinking of phytoplankton cells. An-
alytical results combined with numerical modeling have found critical length scales
of the problem and critical ratios of biological reaction to turbulent time scales for
these assumptions [12,16]. In [36], the authors develop theory and numerical models
to link the critical turbulence hypothesis to the shutdown to convective mixing due to
the reversal in the sign of air-sea heat flux at the end of the winter. As a consequence
of using one-dimensional models, these studies do not explicitly parameterize advec-
tion, instead they use a turbulent diffusivity constant and a second-order diffusion
term. The only movement of phytoplankton is due to gravitational sinking. In this
paper, I use a two dimensional domain for the numerical simulations. This allows me
to separately investigate the effects of advection and the effects of diffusion on the
model system. I then compare the results on a two dimensional domain to analytic
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solutions on a one-dimensional domain.
An alternate hypothesis to light limitation is that ecological mechanisms, in com-

bination with physical forcing, could control bloom timing and the extent of a bloom.
The “dilution-recoupling hypothesis” conjectures that deepening of the mixed layer
causes an imbalance in predator-prey relations and that a temporary release from
predation triggers phytoplankton blooms [3]. Simulation studies related to testing
this more ecologically-oriented hypothesis do not include sinking of phytoplankton,
but do generally include non-linear growth terms [3, 4, 14]. While hypotheses that
relate light exposure to bloom initiation assume that there is no nutrient limitation
and no grazing, more ecologically oriented models for bloom initiation assume that
nutrient limitation and grazing are both present throughout the year. These growth
limitations are can modeled in aggregate using simple non-linear growth [14] or ex-
plicitly as individual forcing [5]. In order to unite or even to compare the hypotheses
related to the interaction between turbulence and light on the one hand and trophic
dynamics on the other, more theoretical modeling of the implications of the critical
depth and critical turbulence hypotheses need to be carried out with non-linear reac-
tion terms, which are commonly used in ecology and biological oceanography.

A goal of this work is to increase theoretical understanding of the predictions
of the above hypotheses for bloom formation in order to facilitate comparisons to
observations. To accomplish this goal, modeling concentration of the light-sensitive
chlorophyll as an outcome of the model rather than parameterizing division rate,
as the studies on the critical turbulence hypothesis and critical depth hypothesis
do, could allow for better comparison to in situ observations. In empirical stud-
ies, chlorophyll concentrations, rather than division rates, are often observed as a
proxy for phytoplankton biomass [27]. Plankton are able to respond physiologically
to variation in light exposure by changing their capacity to perform photosynthe-
sis [9]. Chlorophyll can be observed in situ and measured using satellite ocean color
sensors. Using non-linear models of phytoplankton growth will allow for more direct
comparisons between the critical turbulence hypothesis and the dilution-recoupling
hypothesis. Finally, few theoretical links between the hypotheses for bloom formation
presented above and observed patchiness of plankton blooms have been discussed [25].
Using the numerical results in this paper, I investigate some of the implications of
light limitation for heterogeneity of a bloom.

No particular mathematical model is universally applicable for the problem of
understanding oceanic phytoplankton bloom formation and evolution. In particular,
population dynamics vary across dial and seasonal cycles and different species have
fundamentally different population dynamics [17]. Rather than focusing on matching
model results to a particular bloom, this paper systematically investigates the math-
ematical implications of common biological and physical oceanographic assumptions
about bloom formation. Bloom characteristics can be described in terms of both phys-
ical and biological parameters. The scenarios modeled in this paper are disequilibrium
systems with historic dependence. The rate of return to equilibrium is expected to
depend on reaction, advection, and diffusion within the system. I aim to disentan-
gle the effects of reaction, advection, and diffusion in each of the models. In order
to investigate how non-uniform resource availability and chaotic advection combined
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with diffusion can influence plankton growth rates, including high growth conditions
that are similar to bloom events, and spatial distribution, I conduct numerical ex-
periments using the fluid model described in the previous section. I systematically
introduce different biological models, explaining the motivation behind the modeling
assumptions. In addition, I derive and discuss exact solutions for some of the model-
ing scenarios as a means of discussing the properties of the model that contribute to
predictions about plankton bloom dynamics.

2 Aim and research questions

The overall aim of this study is to use mathematical modeling to determine what
information spatial heterogeneity of biological tracers can provide about the rates and
scaling and phenomenology of biological and turbulent processes and what predictions
about spatial heterogeneity of biological tracers can be made given known scaling and
phenomenology of biological and turbulent processes.

Mathematical modeling
What results can be obtained using mathematical modeling?
In building a mathematical model to represent ocean processes, I am concerned
with both what processes are represented and quantifying the results obtained
from the models.
Hypothesis: Biological reactions with different degrees of non-linearity will
interact in different ways with advection and diffusion such that meaningfully
different conclusions will be drawn about the effects of turbulence on produc-
tivity.

Reaction time scales
How does the time scale of biological reactions relative to the time
scale of turbulence affect spatial heterogeneity?
Previous theoretical and numerical studies have found that the ratio of charac-
teristic time-scales of the biological and turbulent processes is a key parameter
in determining the dynamics of systems controlled by advection, diffusion, and
biological reactions [1, 39]. Experiments will vary this ratio to determine the
influence this rate has on the distribution of tracer concentrations given differ-
ent models of biological processes and idealized flow fields. Analytic results can
also be derived for the theoretical influence of reaction rate on tracer probability
distribution functions.
Hypothesis: Spatial heterogeneity will be increased with faster biological re-
actions relative to mixing.
Hypothesis: Diffusion affects the time to equilibrium and patchiness in sys-
tems with non-linear reactions.

Ecosystem models
How are predictions about the interaction between light exposure
and turbulence affected by the inclusion of higher trophic levels?
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The dilution-recoupling hypothesis diverges entirely from the predictions of the
Hypothesis: In mathematical models, higher trophic levels will interact with
spatially and temporally heterogenous phytoplankton populations such that
there is a dependence between the effects of turbulence on primary productivity
due to light exposure and higher-level ecosystem dynamics.

3 Lattice model of advection-diffusion

The large scale distribution of plankton is modeled by an advection-reaction-
diffusion type equation. I extend the use of a computationally efficient and easy to
implement fluid dynamics model designed to study advection-diffusion systems that
incorporates important theoretical aspects of fluid flow. This model can be easily
modified in order to control the strength of both advection and diffusion (including
scenarios with no diffusion) as well as the time scale and the length scale of the reac-
tions and resource availability. These attributes are important in order to separately
investigate the impacts of advection, diffusion, and reaction on the system. In this
section, I outline the implementation of a model of advection and diffusion and inves-
tigate the impact of the advection model on the properties of a non-reactive tracer.

The density field of nutrient or plankton mass per fluid volume, denoted as N(r,t),
is continuous and two dimensional over the ocean surface or in a vertical profile. The
velocity field, v(r,t), is two-dimensional, incompressible, and varies in time. Mixing
is modeled as diffusion with inverse Peclet number Pe−1. The Peclet number is a
non-dimensional measure of the relative strength of advection to diffusion. Pe = uL

κ

where u is the fluid velocity, L is the length scale, and κ is diffusivity. Reactions
can be included using a number of different functions, denoted by the function F
and described in the following sections. The non-dimensional Damkohler number,
Da, is a ratio of the advective and reactive time scales. The function F determines
the rate of change of plankton mass per fluid volume due to reactions. The Peclet
number and Damkohler number are discussed further in section 3.1. The overall
advection-reaction-diffusion system is:

∂N

∂t
+ v · ∇N = DaF (N; r) + Pe−1∇2N (1)

where the vector N = {N,P, Z} represents, nutrients, phytoplankton, and zooplank-
ton, the components of a ecosystem models

3.1 Dimensional analysis and non-dimensional parameters

The general equation for an advection-reaction-diffusion system in dimensional
parameters, with [N] representing the mass of plankton or nutrients per unit volume
is

∂N

∂t
[N] time−1

+ ∇ · (uN)
[N] length−1×length time−1

= κ∇2N
length2time−1×[N] length−2

+ f(N)
[N] time−1

(2)
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In order to fully explore the parameter space of fluid dynamics and biological proper-
ties and to generalize the results, I use non-dimensional parameters from here forward.
There are two commonly used non-dimensional parameters for advection-reaction-
diffusion systems, the Peclet number (Pe) and the Damkohler number (Da), both
of which appeared earlier in equation 1. The Peclet number is the ratio between
the strength of advection and the strength of diffusion. It is defined as Pe = uL

κ

where L is the length scale of the problem. In this case, L is defined to be the mixed
layer depth. In later sections, when the advection-reaction-diffusion system is used to
model biological tracers, the Peclet number incorporates exchange of biological tracer
between adjacent water parcels due to random motion, including molecular diffusion,
unresolved turbulence, and random swimming by motile plankton.

The Damkohler number is a ratio between reactive and advective time scales. It
is defined as Da = u

L
γ where γ is the reaction rate. In a simple exponential growth

model, γ is the specific growth rate. Even when the reactions are not exponential, the
Damkohler number can be diagnosed by considering the ratio of the reaction term
to the effects of the advection term, either during an exponential growth phase, or
averaged over the time until equilibrium of the reaction. It is evident that Pe and
Da are related through the advective time scale. In order to convert between the
non-dimensional scales used in the following simulations and physical scales, specify
either the time step of the model (T ),which determines the advective timescale, or
the reactive time scale (γ) and either the length scale of the model (L) or the velocity
scale of the model (u) and the other two parameters will be determined.

In the model simulations, I have a third non-dimensional parameter, t∗. t∗ is the
ratio between the model time step, defined as T = L

u
, and the time after which the

velocity field is randomized (Trandom). This quantity parameterizes temporal velocity
variance. Physical reasons for differing velocity variance in the open ocean include
wind variability and internal waves. In this work, I use a consistent t∗ = 3.

3.2 Advection-diffusion model

A turbulent mixed layer is modeled using numerical simulations of a system that
qualitatively reflects ocean turbulence on a two dimensional discrete grid. In this
project, I modify a lattice advection algorithm developed by [32].

3.2.1 Chaotic advection

The fluid flow model is discretized in both space and time. As in the algorithm
in [32], advection is simulated by mapping parcels tagged with tracer concentration
bijectively using an area preserving map at each time step.

x 7→ x+ un(y)∆t
y 7→ y + vn(x)∆t

(3)

With velocities determined by the streamfunction

Ψ = U1 cos(x+ ψn) · f(z) + U2 cos(z + φn) (4)
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Where φn and ψn are independent random phase shifts chosen on the interval [0 2π]
so that all particles will be able to come in contact with each other. Generating
velocities from a streamfunction ensures incompressibility. In the model developed
by [32], the flow in the x direction is not correlated with the flow in the y direction
and the model has doubly periodic boundary conditions. This is equivalent to setting
the function f(z) to a constant in equation 4. With f(z) = 1, the x and z model
velocities are
Step 1:

un(y) = U1 sin(y + φn)
vn(x) = 0

(5)

Step 2:
un(y) = 0
vn(x) = U2 sin(x+ ψn)

(6)

This model produces chaotic trajectories and is consistent with the scaling laws ob-
tained from theoretical studies on fluid flow. Snapshots of the spatial distribution of
tracer with no reactions are shown in figure 1. Figure 1 shows the result of chaotic
advection-diffusion. Without diffusion, the blue and yellow blocks from the left panel
of figure 1 would appear to be randomly distributed after advection for 100 time
steps.

I modified the lattice model presented by [32] to a similar exact Lagrangian

Figure 1: Initially, a small amount of tracer is added to the left hand side of the
domain (left). After 100 time steps, the turbulent mixing has reduced the variance
(right)

model with closed boundaries by defining

f(z) = z(1− z)2 (7)
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For a domain size of 1 in the z-direction. The shape function (equation 7) was chosen
based on the conditions that there is no normal flow through the boundaries (i.e.
f(z = 0) = 0 and f(z = 1) = 0, resulting in the streamfunction equal to zero at the
boundaries) and no tangential flow at the bottom boundary (i.e. f ′(z = 1) = 0). The
condition that the first derivative goes to zero at the layer base avoids large jumps in
diffusivity at z = 1 as discussed in [18] for implementation in the Community Ocean
Vertical Mixing parameterization (CVMix).

The the velocities in each direction that result from this model are

dx

dt
= un(x, z) = Ψy = 2 cos(x+ ψn) · f ′(z) + sin(z + φn) (8)

dz

dt
= wn(x, z) = Ψx = 2 sin(x+ ψn) · f(z) (9)

The velocity fields are mapped in space in figure 2a. Since un and wn, as defined in
equations 8 and 9, respectively, are continuous, the parcels must be coerced onto to
the regular lattice grid at each time step. The problem of optimally fitting a set of
parcels onto a grid is a linear assignment problem. A linear assignment algorithm finds
a bijection that maps set A to set B while also minimizing the total value of a cost
function. In this lattice model problem, the cost function for each parcel i is defined as
the distance between the regular grid points (xg, zg) and the parcel coordinates after
being transformed by the continuous velocity field by the map defined in equation 3.

Ci =
√

(xi − xg)2 + (zi − zg)2 (10)

In the case with f(z) constant, the cost function was minimized by simply rounding
the parcel position in each direction to an integer value. For the fluid model with
closed boundaries, I map parcel locations to the grid using the Jonker-Volgenant
algorithm [21]. A schematic showing the motion of parcels during one time step is
shown in figure 2b. On average, parceled are mapped to very close by grid points (cost
function average values are less than 0.5). The highest values of the cost function are
in the areas with the greatest velocity (compare figure 2c to figure 2a).

3.2.2 Diffusion

The advection scheme alone models the case where Pe→∞. Diffusion is added
using a five-point smoother, so that a range of Peclet numbers are possible for each
grid size.

Ni,j(t+ 1) =
1− b

4
(Ni+1,j(t) + Ni−1,j(t) + Ni,j+1(t) + Ni,j−1(t)) + bNij(t) (11)

where b is a parameter that controls the strength of diffusion. If b = 0, equation 11
is a four point smoother and diffusion is grid-size dependent. If b = 1, then there is
no diffusion (i.e. Pe → ∞). Diffusion is applied after one ∆t time step. Because
the velocity profile varies with depth (figure 2a), the Peclet number also varies with
depth, with peaks at intermediate depth due to large velocities and peaks at shallow
and deep parts of the model due to low gradients, and consequent low rate of change
in tracer concentration due to diffusion.
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Figure 2: Illustrations of the properties of the lattice model of advection and diffusion
with closed boundaries. a. Example velocity fields with no phase shift (φn = ψn =
0), as given by equations 8 and 9 (top) and equation 18 and 20 (bottom). In the
model, the phase shift (φ and ψ) are random variables chosen every 6 time steps.
b. Schematic showing rearrangement of fluid parcels by continuous velocity fields
(equations 8 and 9) and linear assignment. c. Mean cost function (Ci) over 100
replicate simulations. d. Spatial distribution of tracer after 100 time steps of mixing
and stirring starting from an initial tracer gradient with high concentration at the
bottom and low concentration at the top

12



Figure 3: Peclet number distribution with depth for strong diffusion (b = 0) and
weaker diffusion (b = 0.99) on a 50 by 50 grid. b controls the amount of concentration
each parcel exchanges with neighboring parcels in the 5-point smoother defined in
equation 11

3.2.3 Production of tracer variance

With no reactions, the mean tracer concentration over the entire spatial field
predictably stays constant. The variance decays to zero (machine precision) because
of the inclusion of diffusion (figure 4). The variance decays exponentially, as described
in [33]. The similarity between figure 4 and figure 4 is one test that the fluid flow
model used in this paper reproduces the model developed by [33]; more details about
the model can be found in that paper. The rate of decay is related to the typical
Lyapunov exponent of the mixing and the average concentration gradient between
neighboring particles rather than the strength of diffusion. This understanding of
background tracer variance will be utilized when interpreting results that include
forcing from biological reactions.

The flow field is non-divergent so the rate of change of tracer variance without
forcing from a reaction is

∂

∂t

1

2
N2 + u · ∇1

2
N2 = NPe−1∇2N (12)

In the case with periodic boundaries, the variances for the basins with different initial
conditions converge. The results in figure 4 are consistent with those found by Pier-
rehumbert when using the same model [32]. The results from Pierrehumbert (2000)
are shown in figure 5. The no flux boundary conditions introduce spatial strusture in
tracer variance. Snapshots of the spatial distribution of tracer with no reactions and
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Figure 4: Tracer concentration variance with tracer coming from one side, covering
either 1/5th or 2/5ths of the area. Concentration variance of a tracer representing
nutrients (N) is basin integrated and calculated as

∫ ∫
(N2− < N >2)dxdy where

angle brackets denote the spatial average.

Figure 5: Pierrehumbert (2000) figure 3. Tracer concentration variance as a function
of time.
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an initial gradient in tracer from bottom to top are shown in figure 2d. The mean
tracer concentration variance as a function of depth can be fit with a cubic function
that peaks in the middle of the grid, where velocities are also the highest (figure 6).
As can be seen in figure 2d, this is the region where filaments are most likely to form
due to advection.

Consequently, the initial decay of tracer variance depends on the initial con-
ditions (figure 7). Larger gradients are generated by advection when the tracer is
initially randomly distributed or initially on the sides, which are periodic boundaries.
After the initial period, variance decays exponentially at the same rate for all initial
conditions. The tracer concentration variance ultimately decays to zero. After an

Figure 6: Variance with depth on a 50 by 50 grid. The mean normalized variance is the
mean for each depth over 3000 iterations, normalized by the whole grid mean variance
for each iteration. This figure produced with random initial tracer concentration.

initial adjustment period to smooth out gradients related to the initial conditions, the
rate of decay of concentration variance is related to the Peclet number, the Lyapunov
exponent of mixing (λm), and the domain size. Gradients are amplified exponentially
as δ = e−λmt

∗
for non-dimensional λm. While strain amplifies gradients, diffusion

smoothes them out. The scale at which strain and diffusion are balanced is

l∗ = (λmPe)
− 1

2 (13)

As a result of this relationship, for low Peclet number, the characteristic length scale
of mixing is the domain size. The characteristic length scale of mixing is smaller for
larger Pe, as a result, the variance slope is smaller for larger Pe (figure 8).
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Figure 7: Mean variance as a function of time on a 50 by 50 grid. Each line represents
a different initial condition.

Figure 8: Variance with depth on a 50 by 50 grid. The mean normalized variance is the
mean for each depth over 3000 iterations, normalized by the whole grid mean variance
for each iteration. This figure produced with random initial tracer concentration.
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3.2.4 Comparison to in situ measurements

I verify the model velocity field using measurements from Lagrangian floats. The
float is carried in the mixed layer along with a water parcel. When investigating the
influence of turbulence on the growth of plankton due to exposure to different light
conditions, we are most interested in the vertical profile of plankton. The details
of the float design are described in [22]. I try to match the statistics of this float
from one particular time period (August 25th, 2012 to October 3rd, 2012) and place
(North Pacific) to the statistics of the model with closed top and bottom boundaries.
Namely, when matching the mixed layer depth (spatial scale) and average velocity,
I verify that the velocity profile in the model has the same velocity variance and
autocorrelation as fluid parcels in my model have similar depth profiles.
Velocity variance

The velocity variance from flow field defined in equations 8 and 9 nearly matches
the expectation from empirical distributions (figure 9). The shallower peak velocity
in the empirical data (figure 9a) is expected due to wave-driven Langmuir mixing,
which is not incorporated in the idealized fluid model.
Calculations to compare model and observed depth profiles

Figure 9: (a). Velocity variance with pressure as calculated from Lagrangian float
measurements (personal communication, D’Asaro 2015). (b). Velocity variance with
depth on a 50 by 50 grid. The variance is the mean for each depth over 3000 iterations.
This figure produced with random initial tracer concentration.

The median mixed layer depth (H) in the float data is 22 meters. The vertical
velocity variance is known to scale with wind stress forcing [10]. I use the following
relationship (equation 14) to standardize for the effects of wind forcing on vertical
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velocity (w).
w2
observed

w2
standard

=
u∗2observed
u∗2standard

(14)

where for wind stress τwind and water density ρ, u∗ =
√
τwind
ρ

. Using the typical

values of τwind = 0.1 N/m2 and ρ = 1000 kg/m3, I obtain a standard wind forcing
u∗standard = 0.01 m/s. This value is very close to the median u∗ observed from Wa-
verider, 0.0099 m/s, so the rescaling in 14 is not needed. I scale the vertical velocities
in my model to have the same time and space mean variance as the observed vertical
velocities (w2

observed = 1.67× 10−4 m2/s2) (figure 9).
The model time scale, which depends on the length scale and velocity scale is

H
w

= 22
0.0129

= 1, 705 seconds or 28.4 minutes, so I compare vertical positions between
the model and the float observations at 28.4 minute intervals. The vertical velocity
autocorrelation timescale, calculated as the first zero crossing time of the autocorre-
lation curve, is 600 seconds. I randomize the velocity field every 3 model time steps in
order to have the same autocorrelation time scale. The floats record vertical position
every 30 seconds on average (figure 10).

In general, the model has smaller changes in depth in a given time interval
(smaller dz

dt
) than the float. This is likely complicated by the large grid cells in the

model (0.44 meters/grid cell with a 22 meter mixed layer) (figure 10).
Ranges for non-dimensional parameters

Reasonable constraints on Da can be made by comparison to field studies. For
example, [11] used physical oceanographic measurements to estimate that the time
scale for vertical displacement in the open ocean is 0.5-100s h−1. Specific growth rates
of plankton populations have been recorded in field and in situ measurements in bloom
and non-bloom conditions [7, 13] to range from 0.0033 h−1 to 13 h−1. The ratio of
these timescales gives Damkohler numbers in the range of 3.3·10−5 to 7.5. Theoretical
calculation of molecular diffusivity provides an upper bound on the Peclet number.
With average mixed layer velocity of 0.1 m/s and mixed layer depth of 50 meters
and molecular diffusivity of 10−7 m2/s, a typical Peclet number in the ocean mixed
layer would be 5× 106. Smaller values of Pe incorporate unresolved turbulence and
random swimming by plankton.

3.3 Discussion

The simple model of advection and diffusion presented in [32] is efficient to im-
plement and meets many of the requirements for a model of fluid flow. In particular,
it is an exact Lagrangian model that allows control over the strength of diffusivity.
In this section, I confirmed that my implementation matches that of [32]. However,
because there is no correlation between movement in the horizontal direction with
that in the vertical direction, that model can only be used for a system with doubly
periodic boundary conditions. I have adapted the model in [32] for use in exploring
biological productivity in a vertical section of the mixed layer by adding closed top
and bottom boundaries and compared the model depth profiles with the depth profile
of a float in the North Pacific. I then synthesized some of the relevant properties of
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Figure 10: Comparison of float depth with water parcel depths in the model. Depth
is measured as percent of mixed layer; 0 is the surface and 1 is the base of the mixed
layer. Run with a 50 by 50 grid. The float is the bold line.
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the model for analysis of future experiments including exponential decay of variance
of a passive tracer and dependence of the rate of decay on the Lyapunov exponent of
mixing and average concentration gradient between neighboring particles.

The impact of advection model on a biological tracer could be explored further
by using a more realistic flow field or by altering the advection to have multiple
modes leading to stratified turbulence. In addition, although this two dimensional
model allows for full investigation of the predictions of the hypotheses for bloom for-
mation outlined above, the critical depth, critical turbulence, and dilution-recoupling
hypotheses, turbulence in three dimensions could also have important implications
for bloom formation and a similar approach to understanding the fundamentals of
advection, diffusion, and biological reactions in a three-dimensional system could also
yield important insights [25].

4 Reacting tracer fundamentals

Using simple spatially uniform reactions, in this section I discuss the interaction
between reactions and the advection-diffusion model, focusing on tracer variance and
measures of spatial heterogeneity. In this section, I further define some of the baseline
properties of a reaction-advection-diffusion system before adding spatial heterogene-
ity.

4.1 Exponential decay

In order to test the impact of underlying exponential decay of the tracer vari-
ance in a case with a biological reaction, I used a simple model in which a tracer
(representing nutrients) decays exponentially. This simple model of nutrient uptake
occurs without explicitly incorporating biological growth. For this model, the reaction
function is

F (N ; r) = −γN (15)

In this case, the mean tracer concentration decays exponentially with constant
Da. Variance decays exponentially as well (figure 11). The mean of the non-reacting
case multiplied by e−γt is the same as that of the exponential decay case. When the
variance of the non-reacting case is multiplied by e−2γt, it is the same as that of the
exponential decay case (figure 11). This result demonstrates that the background
effects of fluid flow on reactive tracers can be disentangled in certain cases. It is
expected that transport will have no effect on a biological reaction when there is no
spatial heterogeneity due to other terms in equation 1. For example, a population
could have spatially heterogenous growth due to spatially heterogenous nutrient avail-
ability or spatially heterogenous loss due to diffusion of predators or competitors. In
what follows, I develop this idea further by solving for tracer concentrations in the
moving frame of a reaction-advection system.
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Figure 11: Evolution of spatial variance of an exponentially decaying tracer with
time. The rate of exponential decay is γ = 0.1. Initially, the tracer covers 1/5th of
the basin.
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4.2 Method of characteristics solutions for spatially uniform
reactions

When there is no spatial dependence in the reaction term and no diffusion term,
a tracer follows trajectories and changes concentration due only to the reaction term,
independently of the advection terms. Similarly, advection of the tracer is indepen-
dent of the tracer concentration (passive transport).

This is demonstrated by returning again to the simplest tracer transport equa-
tion, where the material derivative is zero. I find expressions for the trajectories of
tracer in the fluid. I begin by solving the equation for transport of a non-diffusive
and non-reactive tracer N(x, t) in one dimension.

DN

Dt
=
∂N

∂t
+ U

∂N

∂x
= 0 (16)

Equation 16 is similar to a conservation of mass statement for a tracer in one di-
mension. This equation can be solved using the method of characteristics. Using the
chain rule:

dN

dt
=
∂N

∂t
+
∂N

∂x

dx

dt
(17)

By comparison with equation 16

dN

dt
=
∂N

∂t
+
∂N

∂x
U = 0

and the system reduces to the coupled set of ODEs,

dN(x,t)
dt

= 0
dx
dt

= U(x, t)
(18)

Solving these equations depends on the form of U(x, t). For example, if U(x, t) = U0

is constant, x = x0 +U0t and the evolution of the concentration has the general form
N(x, t) = f(x− U0t).

Adding a reaction term to equation 16 results in a reaction-advection system
where tracer concentration can change along trajectories. In this solution, I use the
general reaction term F (N). In the last section, I used an exponential decay, i.e.
F (N) = −γN .

DN

Dt
=
∂N

∂t
+ U

∂N

∂x
= F (N) (19)

When the reaction term does not depend explicitly on space or time, a reaction-
advection problem can be solved using the method of characteristics. Comparing
equation 17 to equation 19, I get the coupled set of ODEs,

dN(x,t)
dt

= F (N)
dx
dt

= U(x, t)
(20)

This generalizes to non-divergent two dimensional flow as well

DN

Dt
=
∂N

∂t
+ Ux

∂N

∂x
+ Uy

∂N

∂y
= F (N) (21)
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dN

dt
=
∂N

∂t
+
∂N

∂x

dx

dt
+
∂N

∂y

dy

dt
(22)

Comparing equation 21 and 22, I get a system of ODEs

dN(x,y,t)
dt

= F (N)
dx
dt

= Ux(x, y, t)
dy
dt

= Uy(x, y, t)

(23)

Thus, without diffusion, the transport of a reactive tracer that has no spatial depen-
dence in the reaction term can be easily disentangled from the reaction of that tracer.
While the processes occur together, they do not interact. In this case, the ratio of
time scales of reaction and advection (Da) has no implications for the progress of the
reaction in a Lagrangian frame. With large Pe and a single reacting population, the
results are expected to be similar to first order when diffusion is included.

4.3 Saturating reactions

The next simplest model of exponential decay involves the decay of a tracer until
it reaches a pre-determined background concentration, which I call the saturating
model.

F (N ; r) = γ(N∗ −N) (24)

While diffusion is not expected to change the equilibrium concentration, it may
have transitory effects while the population progresses to equilibrium, when there are
still concentration gradients present. Numerical results demonstrate that in a system
with a saturating reaction of the form presented in equation 24, mixing does not im-
pact the time to reach equilibrium (table 1). In this numerical experiment, the lattice
had a homogenous, non-advecting and non-decaying carrying capacity of either N∗

= 0.1 or N∗ = 0.3. I also ran simulations with an inhomogenous, non-advecting and
non-decaying carrying capacity with mean of N∗ = 0.11. The tracer (phytoplankton)
was placed on the lattice in various configurations, but all with a mean starting value
of 0.2. Equilibrium is determined when the difference between the tracer value and
the mean carrying capacity (< N∗ >) was less than 10−6.

Table 1: Saturating model time to equilibrium

γ With turbulence Without turbulence

0.01 461 461
0.1 47 47
1 4 4
10 1 1

Many methods for measuring spatial heterogeneity are available including prob-
ability density functions (PDFs) and spectral analysis. When using these methods,
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Figure 12: Histogram of normalized tracer concentration after 100 time steps with
no reactions

one presents the variance as a function of the length scale and interprets great spatial
heterogeneity if more of the variance is at the smaller length scale. [24]. I only looked
at the PDFs of tracer concentrations for my simulations. In the case of no reactions
where the tracer concentration decays by advection and diffusion, the PDF is not
Gaussian [32]. The tails of the distribution are larger and more skewed than those of
a Gaussian PDF (figure 12).

Once at equilibrium, the PDFs of the saturating reaction are not Gaussian and are
skewed to the right. With no reactions and with a saturating reaction, the higher order
moments of the distribution are large and vary widely as the reaction progresses.

Using saturating reactions, I have demonstrated diffusion does not affect the
timescale of a spatially homogenous reaction, I have further established that the
first two moments of a distribution, the mean and the variance, are reasonably good
descriptors of the properties of these biological population in turbulent flow.

4.4 Discussion

The results of this section suggest that mixing alone cannot be responsible for
altering the measured properties (mean and variance) of biological dynamics in ocean
systems. There must be some other mechanisms operating at a scale different from
that of mixing that cause heterogeneity in a parameter that is important for biological
growth. I consider these other mechanisms in the chapters that follow.

With simple reactions of the form F (u) (no spatial dependence), the reactions
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Figure 13: Histogram of normalized tracer concentration forced by a saturating reac-
tion with γ = 0.1 after 100 time steps

can be disentangled from advection. This result was derived analytically using a
method of characteristics solution. In practice, in the simulations in which the re-
actions had no spatial dependence, the effects of the reaction can be disentangled
from the effects of advection and diffusion. It was shown numerically that diffusion
does not affect the decay of tracer variance differentially when a reaction accelerates
decay to zero, nor does it differentially affect the time to equilibrium in a reaction
that progresses to a non-zero steady state.

Although the PDFs are not Gaussian for either a non-reactive tracer or a tracer
with a saturating reaction source term, they can be relatively well described with the
Gaussian parameters of mean and variance, except for extreme events, which may
be interesting to investigate. These Gaussian parameters provide useful information
about the system. In the simulations that follow, I use mean and variance to investi-
gate the basic impacts of stirring on well understood models of biological processes.
I selected these parameters to describe bloom dynamics because they most simply fit
the predictions of theoretical models of phytoplankton bloom evolution. A detailed
analysis of higher moments is beyond the scope of this work.

5 Light-dependent non-linear growth

In the previous section, I demonstrated that spatial heterogeneity is necessary
to generate patchy plankton distribution. In modeling the onset of a phytoplankton
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bloom, it might be reasonable to assume that the limit, or carrying capacity, on chloro-
phyll concentration is proportional to light availability, but affected by losses due to
nutrient limitation and grazing. I model loss as a self-limiting process without ex-
plicitly modeling a mechanism for growth limitation at high plankton concentrations.
Even while using this simplifying assumption, the form of phytoplankton growth can
be selected based on a number of other assumptions about population growth.

In order to investigate the effects of assumptions about the form of a biological
reaction on conclusions drawn about population dynamics, I compare and contrast
the results from using two non-linear models of plankton growth of differing degree.
Although the nonlinear models I use in this section are commonly used and simple
to interpret biologically, they are not mathematically simple. I resort to using one-
dimensional models to find analytical solutions.

Mixing can have two main effects on a system, affecting the length scale or the
time scale of population dynamics. These two effects fundamentally underlay the
critical depth hypothesis and critical turbulence hypothesis, respectively. Mixing can
alter the temporal dynamics if the time scale of mixing is such that it interrupts
progress to equilibrium in local populations. The concept of time scales of reactions
interacting with time scales of transport processes has been studied in chemical reac-
tions by modifying the timescale of reactions relative to the timescales of advection
and diffusion [28]. The relative importance of local growth and mixing can also affect
the spatial distribution of a population. Phytoplankton cells will grow faster where
resources are abundant, but transport processes will mix cells between areas of high
and low concentration. At the limit of very fast mixing, cells will be uniformly dis-
tributed regardless of resource availability, according to the assumptions of the critical
depth hypothesis. In this section, I use the fluid model with closed top and bottom
boundaries in order to simulate zero flux in a vertical column. Light is modeled as
an exponential decay, with highest light levels at the top of the section.

5.1 Temporal heterogeneity of equilibrium dynamics

Introducing spatial variation in one of the two interacting variables (nutrients
and phytoplankton) allows me to create models with non-trivial effects of stirring. I
create an inhomogeneous carrying capacity field for the plankton that does not vary
with stirring. Light availability, which is an explicit function of z, is modeled as
exponential decay with e-folding depth 1

λ
[8].

N(z) = e−λz (25)

From a Lagrangian perspective, mixing brings a fluid parcel and the phytoplankton
it contains into contact with different carrying capacities at different times. In this
way, the spatial heterogeneity becomes temporal heterogeneity, depending on the
perspective. I use a logistic growth model for plankton in this section and solve it
numerically using a Runge-Kutta method, ode45 in Matlab.
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F (P ; r) = γP

(
1− P

K(r)

)
(26)

In the above model, K(r) is the carrying capacity and does not change throughout
time. I carried out a simulation with plankton starting at a uniform concentration
and K(r) = N(z) (figure 14). Physically, this setup could represent different carrying
capacities because of different light availability at different depths. λ varies seasonally
and with the dial cycle. I use a simple formulation of the Damkohler number

Da =
¯〈u
L

〉
γ (27)

Where γ is the exponential growth rate in equation 26, the over bar represents the
time mean and the angle brackets represent the spatial mean. The advantage of this
formulation is that Da is a simple summary statistic that does not vary with time
and space. However, as discussed below, alternative formulations may be more ap-
propriate for representing the timescales of non-linear reactions in chaotic flows.

In this case, the PDF of plankton concentration is multimodal. At low growth,
the PDF has three peaks. As γ increases, there are many low concentration parcels;
the log of the concentration distribution becomes a uniform distribution. Conse-
quently, I use the median rather than the mean as a bulk statistic for these popula-
tions.

Figure 14: Median concentration of plankton as a function of both growth rate and
Peclet number

Figure 14 shows the median phytoplankton concentration after equilibrium as a
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function of the growth rate and Peclet number. While the concentration depends on
the growth rate, it does not depend strongly on the Peclet number. This indicates
that transport of water parcels rather than exchange of material between parcels is a
more important factor controlling the population dynamics. Reducing γ, the growth
rate of the plankton relative to mixing speed, reduces the equilibrium concentration
of the plankton. The reduced concentration can be thought of as an effective carrying
capacity due to strong stirring.

5.1.1 Analytic results for dependence on time scale

The finding that the equilibrium plankton concentration with relatively fast
growth rates is higher than equilibrium plankton concentration with slow growth
rates can be predicted from the spatially dependent logistic growth equation. The
effects of stirring disappear with fast growth rate, so the equilibrium population is the
arithmetic spatial average of carrying capacity. With slow growth rate relative to stir-
ring rate the effective carrying capacity an individual parcel containing phytoplankton
is exposed to many carrying capacities during the time scale of its reaction. So the
equilibrium population level would be a spatial average of the carrying capacity. I set
dP
dt

= 0 to find the equilibrium value, which satisfies:

γP

(
1− P

〈
1

K(r)

〉)
= 0 (28)

Then, P = 〈 1
K
〉−1, which is the harmonic mean of the carrying capacity, as derived

in [30]. Thus, the equilibrium concentration depends on the time scale of the reaction.

5.1.2 Out of equilibrium population dynamics

With a constant stirring rate, slower growth rates also result in oscillations after
an initial transient phase. Both the period and the amplitude of these oscillations
depend on the time scale of the biological reaction (figure 15). The period and am-
plitude of the oscillations and the effective carrying capacity might also be expected
to depend on the relationship between the spatial distribution of the carrying ca-
pacity in relation to the advection function. The oscillations are likely due to the
historic dependence of the plankton concentration on both past light levels and past
population concentrations. A population can be transported to a location where it is
above the local carrying capacity, resulting in a population crash. Indeed, examining
the concentration of plankton in a single water parcel over time shows that the bulk
fluctuations in plankton concentration are caused by taking the average of many out
of equilibrium oscillating populations (figure 16).

Although the mean equilibrium value of the population does not noticeably
depend on the Peclet number, the Peclet number could still influence the popula-
tion dynamics given that each water parcel is fluctuating out of equilibrium (figure
16). In particular, I find that the correlation between light history and abundance
history depends on both the Peclet number and the growth rate. Calculating the
cross-correlation between the time series of light levels and time series of plankton
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Figure 15: Mean concentration of plankton with different growth rates. The arith-
metic mean carrying capacity for this population is 0.22. The harmonic mean carrying
capacity for this population is 0.04.

concentration for each water parcel as it moves in the turbulent flow reveals that
population abundance is most correlated with light levels 0-8 time steps after en-
countering that light level. The lag is greater with slower growth at larger Pe (figure
17).

Increasing the Peclet number results in less exchange of material between neigh-
boring water parcels and thus higher variance in phytoplankton concentration at a
particular depth, particularly in shallower water (figure 18 left). Reaction timescale
is linked to diffusion timescale through the advective timescale. To be concrete, the
ratio of diffusive timescale to reactive timescale is Da ·Pe. In this case, it seems that
the smoothing effect of larger diffusion increases the rate at which populations reach
equilibrium with the local environment.

Mean population variance also depends on both Pe and on Da. With logistic
reactions, variance peaks at shallow depths (figure 18). Concentration variance peaks
at intermediate depths for non-reacting tracers (figure 6). The difference is likely
due to the higher concentrations at shallow depths in the cases with light-dependent
growth. At smaller values of Da, the concentration variance peak shifts to interme-
diate depths, as would be expected for the non-reacting limit. Due to the smoothing
effect of diffusion, the peak concentration variance is higher for larger Pe. Concentra-
tion variance also has the largest peak concentration variance when Da is order 1. At
higher and lower Da values, concentration variance is lower. Da order 1 means that
biological reaction timescales and turbulence timescales are around the same. These
results demonstrate a case in which spatial heterogeneity emerges from turbulence
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Figure 16: Red dashed: Light history of a single water parcel. Blue solid: Concen-
tration of plankton in the water parcel. The population had Da = 1 and diffusion
was a four-point smoother (b = 0).

and growth at the same timescale, rather than stirring creating inhomogeneities by
stretching a localized bloom.

5.1.3 Perturbation analysis: traveling wave solutions

Analytically, diffusion does have an effect on the progress of a reaction, even
reactions are spatially homogenous. In this section, I derive a result that provides
theoretical support for the result presented in the last section with regards to the
lag in correlation between light levels and population abundances (figure 17). With
a particular initial condition, a traveling wave solution can be found to the non-
linear reaction-advection-diffusion system with a logistic reaction term. Adding a
small diffusion term to equation 19 introduces a spatial dependence that results in
coupling the concentration of a parcel to the concentration of neighboring parcels.
The small diffusion term represents a large Peclet number. I show that the traveling
wave velocity depends on the Peclet number in a way that is consistent with the idea
that, for large Peclet number, there is greater lag at larger Peclet number. This result
is presented in equation 38, and derived below.

∂N

∂t
+ U

∂N

∂x
− Pe−1∂

2N

∂x2
= N(1−N) (29)

In this equation, U is a constant velocity. A change of coordinates to solve the
equation in the moving frame reduces this to a reaction-diffusion problem. Use the
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Figure 17: Lag in correlation between light levels and population concentration, cal-
culated from time series of both concentration and light levels for each water parcel
along a Lagrangian trajectory. Pe is the Peclet number for the case with no reactions.

coordinate change l = x− Ut and t = τ and rewrite equation 29 as

−U ∂N
∂l

+ ∂N
∂τ

+ U ∂N
∂l
− Pe−1 ∂2N

∂l2
= N(1−N)

∂N
∂τ
− Pe−1 ∂2N

∂l2
= N(1−N)

(30)

The reaction term (f(N) = N(1−N)) is smooth for 0 ≤ N ≤ 1 and positive on
that interval, except that f(0) = f(1) = 0. The steady state at N = 0 is unstable
while the steady state at N = 1 is stable. These are general conditions on the reaction
term in the Fisher-KPP equation and control the initial condition for a traveling wave
solution. The initial condition, N0 = g(l, 0) is constrained such that 0 < g(l) < 1 and
g(l) → 1 as l → −∞, g(l) → 0 as l → +∞. The initial condition connects the two
steady states of the reaction term. I choose

g(l) =
1

1 + eλl
(31)

and find a traveling wave solution to equation 30 on an infinite line.
The small diffusion term introduces a second time scale into the logistic growth

reaction term. Using a multiple scales expansion,

τ1 = τ = t, τ2 = Pe−1τ
N ∼ N0 + Pe−1N1 + ...

(∂τ1 + Pe−1∂τ2)N = Pe−1∂llN +N(1−N)

The order 1 solution is
∂τ1N0 = N0(1−N0)
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Figure 18: Left: Vertical profiles of phytoplankton concentration variance with
Da = 1 for different Peclet numbers. Right: Vertical profiles of phytoplankton
concentration variance with Pe = 9.1 for different growth rates.

with initial condition
N0(l, 0, 0) = g(l)

this equation can be solved using separation of variables∫ c0

1/2

ds

s(1− s)
= τ1 + Θ(l, τ2) (32)

with initial condition ∫ g(l)

1/2

ds

s(1− s)
= Θ(l, 0)

Equation 32 can be rewritten as an implicit solution

N0 = n0(τ1 + Θ(x, τ2)) (33)

where n0(r) satisfies
∫ n0

1/2
ds

s(1−s) = r, so

n0(r) =
1

1 + e−r

The order Pe−1 equation is

∂τ1N1 = ∂llN0 +N1(1− 2N0)− ∂τ2N0

Plugging in equation 33,

∂τ1N1 = N1(1− 2N0) +N0(1−N0)[Θll −Θτ2 + (1− 2N0)Θ2
l ]
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and integrating yields an expression for N1 in terms of N0 and Θ.

u1 = N0(1−N0)[A(l, τ2) + (τ1 + Θ)(Θll −Θτ2) + Θ2
l ln(N0(1−N0))] (34)

As τ1 + Θ → −∞, N0 → 0 and the logarithmic term in 34 produces a secular term
(ln(N0(1−N0)) ∼ τ1 + Θ). Therefore, require that

Θll −Θτ2 + Θ2
l = 0 (35)

This equation can be solved using the change of variables w(l, τ2) = eΘ(l,τ2). Equation
49 then reduces to a linear diffusion equation with space and time on the same scale.

wll = wτ2

where

w(l, τ2) = e−λl
√
τ2

π

∫ ∞
−∞

eτ2s(s−2λ)ds = e−λl+λ
2τ2

The asymptotic approximation to equation 30 is then

N ∼ 1

1 + eλl−(1+λ2Pe−1)τ
(36)

and the asymptotic approximation for the full reaction-advection-diffusion system
(equation 29) is

N ∼ 1

1 + eλ(x−Ut)−(1+λ2Pe−1)t
(37)

The traveling wave velocity is v(l) ∼ 1+λ2Pe−1

λ
. The expected lag in the propagation

of a traveling wave depends on the length scale of the problem.

lag ≈ L

v(l)
∼ λL

1 + λ2Pe−1
(38)

Although the numerical simulations are done on a 2D periodic domain rather
than an infinite line and with spatially dependent advection terms, the existence of
a traveling wave solution that depends on Pe for this type of equation suggests one
way in which diffusion adds spatial heterogeneity to an otherwise spatially uniform
reaction system.

5.2 Spatial scale of equilibrium dynamics

In this section, I systematically vary the spatial field of the carrying capacity.
Again, with light as the limiting resource, a faster rate of decrease of light intensity
within the lattice used in the simulation could mean that plankton are being mixed
to a greater depth (an assumption on both the speed of mixing and the depth of the
actively mixing layer) or represent seasonal or spatial variation in light penetration.
A survey of light penetration depth found that the 1% light level is around 5 meters
in coastal areas and 50 meters in the open ocean [11]. Normalizing using a 50 meter
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mixed layer depth, this corresponds to values of λ, as defined in equation 25, of 0.09-
0.9 in non-dimensional form.

As in section 3, a faster mixing rate causes a lower spatially averaged population
at equilibrium (figure 19, point D). The harmonic mean, as derived in the last section
(equation 28), is the effective carrying capacity of the slow growth limit. Figure 19
shows the shape of the dependence of effective carrying capacity on the spatial and
temporal parameters used in the advection-reaction-diffusion system.

Figure 19: Median concentration of plankton with advection and diffusion normalized
by mean carrying capacity K(r). The e-folding depth of light, λ, is plotted on the
vertical axis (equation 25). The horizontal axis shows the ratio of growth to stirring,
Da, on a log scale. Slower growth relative to stirring is on the right hand side of the
graph. The red lines show the parameter combinations used in the depth profiles in
figure 20

The modeled gradients in Da and in light penetration can be used to discuss
the critical turbulence hypothesis, which posits that the rate of mixing determines
bloom formation, in relation to the critical depth hypothesis, which posits that the
depth of mixing determines bloom formation. In figure 19, line AB corresponds to
the mixed layer depth variation that the critical depth hypothesis posits as key to
bloom dynamics. Figure 19 line CD corresponds to the stirring rate variability that
the critical turbulence hypothesis claims controls bloom dynamics. Along line AB,
for a given Da, a smaller e-folding depth will result in more extreme variation in light
concentrations experienced by a particular population of phytoplankton. Plankton
are also exposed to lower spatially averaged light concentrations (spatial mean and
spatial harmonic mean concentrations). Thus, with shallower light penetration (figure
19, point B), mean plankton concentrations will be lower.
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Phytoplankton in the regime with low light penetration relative to mixing depth
will also be farthest from equilibrium. For example, in figure 20a, the curve λ = 1
is the closest to vertical, indicating that for a given light level, local populations
are on average near or at their concentration limit for that particular light level.
Populations tend to be below the expected concentration at the top, where light
levels are high, and above the expected concentration at the bottom, where light
levels are low. This is particularly true for the case where λ = 0.2, the shallowest
light e-folding depth used. More extreme variation in light availability results in a
situation in which phytoplankton concentrations, considered in the whole frame, are
farther from equilibrium.

Figure 20: a: Vertical profiles of phytoplankton concentration with Da = 1 for
different light e-folding depths. Mean phytoplankton concentration at each depth is
normalized by N(z) as written in equation 25 for each value of λ. The vertical red line
in figure 19 shows overall average for the parameters used for this figure. b: Vertical
profiles of phytoplankton concentration with λ = 0.6 for different Da. The horizontal
red line in figure 19 shows overall average for the parameters used for this figure.

Along the line CD, for a given light e-folding depth, slower biological growth
relative to mixing produces a more uniform vertical distribution of phytoplankton.
However, for faster biological growth relative to mixing, the vertical profile of plankton
concentration nearly matches the exponential decay profile of light availability with
depth (figure 20b). Sverdrup’s critical depth hypothesis assumes uniform distribution
of phytoplankton. The result presented here demonstrate that this assumption may
imply additional assumptions about the growth rate of phytoplankton, namely that
growth rate is low compared to the rate of stirring in the system. In the critical
turbulence hypothesis, the exact ratio of growth to stirring timescales (Da) required
to maintain a uniform distribution of phytoplankton with depth depends on the light
e-folding depth [16]. These results help to constrain exactly which values of Da should
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be considered ”slow” and ”fast” when referring to the critical turbulence hypothesis
when plankton grow non-linearly. Parameters for which the plankton concentration
is uniform with depth should be characterized as fast stirring/slow growth regimes
in which the critical depth criterion might be expected to be most relevant. In slow
stirring/fast growth regimes, interaction between turbulent and biological timescales
is likely more important. For the realistic case of intermediate light penetration
(shown in figure 20a), cases with Da order 1 fall into a slow stirring regime, where
the critical turbulence hypothesis is most relevant.

Bulk and single particle oscillations are not only due to the ratio between

Figure 21: Difference between the upper and lower quartile values of the phytoplank-
ton concentration once it has reached equilibrium, normalized by carrying capacity.
The light e-folding depth, λ, is plotted on the vertical axis. Deeper light penetra-
tion is at the bottom of the graph. The horizontal axis shows the natural log of the
Damkohler number, Da. Faster stirring relative to biological reaction rate is on the
left hand side of the graph.

biological and turbulent timescales (figures 15 and 16), but also the degree of spatial
heterogeneity. Figure 21 shows that for a shallower light e-folding depth, the case
in which the vertical profile of plankton is most out of equilibrium, bulk oscillations
are the greatest. In addition, as previously discussed, oscillations are greatest at
intermediate growth rates. Again, examining figure 20a this is the case in which the
system is farthest from the limits of either exponential decay in concentration with
depth or uniform distribution with depth.
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5.3 Cubic reaction terms

While logistic growth is a common model for population dynamics, in this case
it might not necessarily be the best choice for a model of population dynamics. In-
stead, a model in which local populations that reach too low concentrations have the
possibility of going extinct would better incorporate the effects of low light conditions
on a phytoplankton population. This can be accomplished by using a cubic reaction
model.

F (P ; r) = γP

(
1− P

K(r)

)
(P − a) (39)

where a is less than K(r). By introducing this additional term, zero becomes a stable
steady state. The value a is an unstable steady state. Population concentrations
below a will decrease while population concentrations above a will increase to the
stable steady state K(r). In the reaction-advection-diffusion system, a local popula-
tion can recover from extinction and increase above a by exchanging material with a
neighboring water parcel. Similarly, a population can decrease below a and towards
extinction through exchange of material with neighboring parcels.

Again, the Damkohler number is defined as a time- and space-invariant quantity

Da =
¯〈u
L

〉
γ (40)

Where γ is the exponential growth rate in equation 26, the over bar represents the
time mean and the angle brackets represent the spatial mean.

The cubic growth model must be used with much more care than the logistic
growth model. One caveat is that populations with concentrations below a will go
to zero faster when exposed to higher carrying capacities (K(r)) and will require
a perturbation, such as diffusion of material from a neighboring water parcel, to
increase above a. Consequently, this model is more sensitive to initial conditions
than the logistic model. An initial population with concentration below a will go to
the zero steady while one above a will go to the carrying capacity. Without some
forcing, such as diffusion, to push a population above or below a, this parameter
becomes and upper or lower bound, depending on the initial condition. In addition,
the cubic model is only reasonable for small a relative to the expected value of K(r).
In the following simulations I use a = 0.05 and a = 0. With λ = 0.01, the average
value of K(r) is 0.791 and the minimum is 0.0105. If a is greater than K(r), then a
becomes the stable steady state and the carrying capacity K(r) is unstable.

5.3.1 Spatial distribution

Similarly to the logistic growth equation, average plankton concentration depends
strongly on reaction rate. The concentration also depends on Pe for fast growth (fig-
ure 22). The average plankton concentrations change more rapidly when Da ≈ 1
with a cubic reaction term. While different average biomass may be expected for
different order reaction terms, this distribution of productivity change suggests that
a different scaling of Da would be more appropriate for comparison. In section 5.2,
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Figure 22: Median concentration of plankton as a function of both growth rate and
Peclet number

I demonstrated that vertical distribution of average chlorophyll concentrations with
depth are diagnostic of particular relationships between turbulence and reaction rate.
Figure 23 shows that the depth distributions of plankton for a given value of Da are
significantly different from those with forcing from a quadratic reaction term (figure
20), especially for intermediate growth rates. Based on this result, I suggest that Da
should be parameterized differently with different order non-linear reactions.

I have made a substantial simplification by assuming that Da is constant
through time, even with a saturating growth profile. With saturating growth, rate of
accumulation of biomass depends on the population size. A more accurate Damkohler
number for a reaction-advection diffusion system with an order n reaction term should
be Da ≈ u

L
γ(1− P

K
)n−1. This definition of Da means that for a given vertical profile,

Da would depend on the depth (since K depends on depth) as well as local plankton
concentration. In other words, Da would vary quite substantially in space and time.
Given that in this and in previous sections I have obtained useful results by using a
constant Da, I propose that developing a value of Da that depends on just the reac-
tion rate, γ, and the order of the reaction term, n, would be a useful contribution. It
may also be interesting to develop a similar summary statistic that is a function of
γ, n, and the light e-folding depth, λ.

5.3.2 Traveling wave solution for cubic reaction

Not only does the reaction-advection-diffusion system model with a cubic reac-
tion term model some relevant properties of ecological populations that are left out
in models of logistic growth, this system also has an exact traveling wave solution on
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Figure 23: Average concentration of plankton as a function of depth with Pe = 24.
Each curve has a different value of Da. The dark blue line (Da = 0.1) is the case
with the slowest reaction. The light blue line (Da = 20) is the case with the fastest
reaction.

the line.
∂N

∂t
+ U

∂N

∂x
+
∂2N

∂x2
= N(N − a)(1−N) (41)

In this equation, U is a constant velocity. A change of coordinates to solve the
equation in the moving frame reduces this to a reaction-diffusion problem. Use the
coordinate change l = x− Ut and t = τ and rewrite equation 29 as

−U ∂N
∂l

+ ∂N
∂τ

+ U ∂N
∂l

+ ∂2N
∂l2

= N(N − a)(1−N)
∂N
∂τ

+ ∂2N
∂l2

= N(N − a)(1−N)
(42)

Assume a traveling wave solution with velocity v and make the change of variables
ξ = l + vτ to find this solution N(l, τ) = φ(l + vτ) and let ’ denote differentiation
with respect to ξ to obtain the second order equation

vN ′ = N ′′ +N(N − a)(1−N) (43)

Substitute N ′ = g(N).

vg(N) = g′(N)g(N) +N(N − a)(1−N) (44)

Make the Ansatz g(N) = bN(1−N). This is a good Ansatz because:

• g(0) = g(1) = 0
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• The Ansatz is smooth and positive for 0 < N < 1

• The two terms on the right hand side will be the same order. If O(g(N)) = 2,
O(g′(N)g(N)) = 1 + 2 = 3, and O(N(N − a)(1−N)) = 3

Substituting in g(N)

vbN(1−N) = b(1− 2N)bN(1−N) +N(N − a)(1−N)
vb− b2 + a = N(1− 2b2)

(45)

This equation is satisfied for all N ∈ R if and only if

1− 2b2 = 0 =⇒ b =
1√
2

(46)

and if and only if the velocity is specified by the parameter a as follows

vb− b2 + a = 0 =⇒ v =
b2 − a
b

=
1√
2

(1− 2a) (47)

Finally, solve the equation g(N) = N ′ = 1√
2
N(1−N) to obtain

N(ξ) =
eξ/
√

2

N1 + eξ/
√

2
(48)

Assume N(0) = 1
2

=⇒ N1 = 1.

N(ξ) =
eξ/
√

2

1 + eξ/
√

2
(49)

5.3.3 Form of background heterogeneity

In section 4, I concluded using numerical simulations that spatially variable forc-
ing is required to generate patchiness in a reaction-advection-diffusion system with
a single plankton population and continuous growth. In this paper, I have chosen
to investigate the impact of light availability on a bloom. While light availability
is typically modeled as an exponential decay, as it is in this study, factors such as
suspended particles and self-shading by a bloom could be meaningfully incorporated
into models of bloom formation by altering this assumption. Many modeling stud-
ies have used step functions to model light availability in an analytically tractable
fashion [16]. In the two dimensional model used in the numerical simulations in this
paper could be reasonably approximated as one dimensional trajectories with a highly
variable carrying capacity (figure 16). Although each are meaningful assumptions,
the shape of light availability could affect the propagation of a bloom. In this sec-
tion, I find an asymptotic solution to a general reaction-advection-diffusion system
with a small spatially inhomogeneous reaction term and then investigate the way in
which the propagation speed of the traveling wave solution depends on the shape of
the spatially inhomogeneous function in the reaction term. Although I am currently
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investigating a one-species model, propagation speed of a traveling wave would have
important implications for competition between species, especially if the species have
different parts of a spatial domain in which they grow fastest. In the single species
scenario, traveling wave propagation speed could have implications for the likelihood
of a bloom when resources are temporally heterogenous. One might ask if a bloom
can occur before conditions change to be less advantageous to the bloom-forming
population.

In the work below, I use an asymptotic expansion to investigate the effects of the
form of a carrying capacity curve on bloom propagation. The existence of an exact
solution for a traveling wave on the line for a cubic reaction term simplifies this calcu-
lation because diffusion and reaction are assumed to occur on the same timescale for
the exact solution, so even with the assumption that the spatially varying carrying
capacity is a small parameter, this asymptotic expansion only requires two timescales.
After deriving a general equation for bloom propagation with spatially variable car-
rying capacity (equation 56), I plot the solutions for the example case of exponential
decay of light with depth.

Modify equation 43 to have a general spatially varying carrying capacity and
substitute v = −v

vc′ = c′′ + c((c− a)(1− c) + εK(x)) = c′′ + c((c− a)(1− c) + εK(ξ + vτ)) (50)

Solve this equation by finding an asymptotic solution of the form

c = c0 + εc1 + . . . (51)

The solution c0 to the O(1) problem is the same as the solution given in equation 49.

c0(ξ) = eξ/
√
2

1+eξ/
√
2
. The O(ε) problem is

∂tc1 + vc′1 = c′′1 + c1(−3c2
0 + 2(a+ 1)c0 − a) +K(ξ + vτ)c0 (52)

Find an approximation to equation 52 by decomposing c1(ξ, τ) as

c1(ξ, τ) = p(τ)c′0(ξ) + c̃1(ξ, τ)

Where the first term on the right hand side represents a position change of the
traveling wave and the second term represents a change in the shape of the traveling
wave front. Rewriting equation 52 as

∂τc1 = Lc1 + h(ξ, τ)

where L is an operator containing all of the linear terms in equation 52 and h is the
higher order corrections. Equate the two formulations of ∂τc1 to obtain the equation

ṗc′0 + ∂τ c̃1 = pLc′0 + Lc̃1 + h(ξ, τ) = Lc̃1 + h(ξ, τ) (53)

Assume that the two terms containing c̃0 are equal by choosing a particular c̃0 and a
projection w1(ξ) such that L∗w1(ξ) = 0. Solve the equation

(∂2
ξ + v∂ξ + f ′(c0))w1(ξ) = 0 (54)
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Assume a solution of the form w1(ξ) = ebξc′0(ξ) and plug this assumption into equation
54. Solve for b.

((b+ ∂ξ)
2 + v(b+ ∂xi))e

bξc′0 = (∂2
ξ − v∂ξ)ebξc′0

b2 + 2b∂ξ + ∂2
ξ + vb+ v∂ξ = ∂2

ξ − v∂ξ
(b+ v)(b+ 2∂ξ) = 0

=⇒ b = −v

For traveling wave velocity v, as defined in equation 47.

w1(ξ) =
1√
2
e

(
1√
2

(1−2a)
)
ξ eξ/

√
2

(1 + eξ/
√

2)2
(55)

Use the projection w1(ξ) to integrate 53.∫ ∞
−∞

w1(ξ)(ṗc′0 + ∂tc̃1)dξ =

∫ ∞
−∞

w1(ξ)(Lc̃1 + h(ξ, t))dξ

By the assumption, the c̃1 terms drop out and K(ξ+vτ) = h(ξ, t), leaving the integral

ṗ(τ)

∫ ∞
−∞

w1(ξ)c′0(ξ)dξ =

∫ ∞
−∞

w1(ξ)K(ξ + vτ)c0(ξ)dξ (56)

Solve for ṗ(τ) using numerical integration for different functions K(ξ − vτ).

Exponential decay
Assume a profile of the form

K(x) = e−0.01x =⇒ K(ξ + vτ) = e−0.01(ξ+vτ)

ṗ(t) =

∫∞
−∞w1(ξ)e−0.01(ξ+vt)c0(ξ)dξ∫∞

−∞w1(ξ)c′0(ξ)dξ
= 1.129e−0.00636τ (57)

Assuming a = 0.05, as in the numerical simulations, and integrating equation 57 in
τ , the asymptotic expansion (equation 51) for a wave traveling down an exponential
decay in carrying capacity (from high to low carrying capacity) is

c(l, τ) =
e(l−0.636τ)/

√
2

1 + e(l−0.636τ)/
√

2
+ ε(−177.422e−0.00636396τ + 177.422)

e(l−0.636τ)/
√

2

√
2(1 + e(l−0.636τ)/

√
2)2

(58)
This solution represents a subtle slowing down when a localized population expands
over an area with an exponential decay in resource availability, as opposed to uniform
resource availability (figure 24).
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Figure 24: Traveling wave solution to a reaction-advection-diffusion system with a
uniform carrying capacity (K(x) = constant) and b exponentially decaying carrying
capacity (K(x) = exp(−λx)) (equation 58) with ε = 0.1.

5.4 Discussion

I have shown that not only does the depth of light penetration affect phytoplank-
ton population dynamics, but also that the relative timescale of biological growth and
advective transport are important determinants of phytoplankton population dynam-
ics, in accordance with the predictions of the critical depth hypothesis and the critical
turbulence hypothesis. I examined equilibrium solutions and found that due to the
dependence of the plankton concentration on previous light levels, the whole system
is out of equilibrium, particularly for Da ∼ O(1), resulting in seemingly random
fluctuations in mean concentration through time once at equilibrium. Through ex-
amining individual populations, it is clear that these fluctuations are an aggregation
of many locally fluctuating populations. In the limiting cases of very slow and very
fast growth relative to stirring, the average plankton concentration goes to a value
determined by light availability in the mixed layer. With Da ∼ O(1), high variance
emerges as a result of the interaction between stirring and growth.

Most studies of plankton bloom formation do not separate the effects of chaotic
advection and diffusion. In a turbulent environment, local populations that are grow-
ing with either logistic or cubic reaction terms are out of equilibrium due to chaotic
advection. In addition, they are linked to each other through historic dependence on
the light levels experienced along a given trajectory and through diffusion of material
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with neighboring parcels. Diffusion between neighboring water parcels can generate
traveling waves that propagate across the whole domain. The speed of propagation of
a traveling wave, which models the the spread of a localized bloom, depends on Pe,
or the degree of turbulence and random swimming by plankton and on the assumed
form of background heterogeneity. Assumptions about the degree of background het-
erogeneity and the form of that heterogeneity can affect the propagation of a bloom.
In this work, the background heterogeneity is in the form of exponential decay with
depth, which plankton sample non-uniformly due to chaotic advection. Diffusion and
advection have different effects on the blooming plankton population and should be
considered separately when discussing the factors that trigger bloom formation.

Finally, I discussed the summary statistics used in this work. In particular, I
suggest that substantial simplifications in the form of biological reaction rate are rea-
sonable such that plankton concentration is not necessary to include in Da even with
non-linear reaction terms. However, the effective growth rate, γ, and the order of the
reaction term, n, are necessary to incorporate in Da. In addition, since the interac-
tion between turbulence and biological growth are strongly dependent on the degree
of background heterogeneity, including the light e-folding depth, λ, in a summary
statistic of the relationship between reaction and advection could be informative.

6 Predator-prey

The logistic growth model can be modified to account for predation while pre-
serving the dependence of the reactions on light levels. This system of equations
(59-61) uses the inhomogeneous carrying capacity presented in equation (25) and a
Holling type II functional response (which is saturating) to transfer mass between
the prey and the predator. Both prey (P , for phytoplankton) and predator (Z, for
zooplankton) experience the same mixing and stirring (same velocity, same value of
Pe). In this section, I use the fluid model with doubly periodic boundary conditions.
Using the fluid model with closed top and bottom boundaries would give further
information about the spatial distribution of phytoplankton and zooplankton [2, 40].

N(z) = e−λz (59)

∂P

∂t
+ v · ∇P = γ

[
P

(
1− P

N(z)

)
− a PZ

P + S

]
+ Pe−1∇2P (60)

∂Z

∂t
+ v · ∇Z = γ

[
ea

PZ

P + S
−mZ

]
+ Pe−1∇2Z (61)

Where Z is the zooplankton population, m is the natural mortality rate of zooplank-
ton, e is the conversion efficiency of phytoplankton into energy for the zooplankton,
and S parameterizes the functional response of the intake rate of the zooplankton to
number of phytoplankton consumed.

Again, I use a simple formulation of the Damkohler number

Da =
¯〈u
L

〉
γ (62)
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Where γ is the exponential growth rate in equation 26, the over bar represents the
time mean and the angle brackets represent the spatial mean. I have not formulated
an additional Damkohler number for zooplankton. Instead, I analyze only the phy-
toplankton population dynamics. Incorporating either linear or non-linear loss terms
into a generalized time and space varying or time-and space-invariant Damkohler
number may be required for some applications. However, as I show in the analysis
below, even a Da statistic based on the exponential growth phase alone gives useful
information about population dynamics.

6.1 Bifurcations and oscillatory dynamics

This two-dimensional non-linear system can result in oscillations for certain pa-
rameter combinations. A set of parameters that results in oscillations without mixing
is shown in table 2.

Table 2: NPZ oscillatory model parameters

Parameter Value

λ 0.06-0.1
γ 0.1-1
a 1.67
S 0.3
e 0.3
m 0.2

Strong stirring in a strongly non-uniform carrying capacity field can result
in oscillator death, because the effective carrying capacity is reduced beyond the bi-
furcation point of the oscillatory system [30]. Oscillator death results from a Hopf
bifurcation. The bifurcation curve can be predicted analytically for the case without
stirring. In order to investigate the effects of stirring, I plotted time-series for a wide
range of parameter values and classified the results as oscillatory if the result was
clearly approaching a stable limit cycle and decaying (oscillator death) if the oscilla-
tions were decaying. Predictably, with a more homogenous medium, meaning slower
rate of decay of the carrying capacity, stirring has a smaller effect and does not cause
the system to pass a bifurcation point. For a given rate of decay of carrying capacity,
though, stirring does affect the coupling of the oscillators (the two populations), with
slow reaction rates decoupling oscillators when the carrying capacity is more inho-
mogeneous. The phase portrait is shown in figure (25). This result is analogous to a
result obtained for chemical reactions in an oscillatory medium [31].

In order to find the bifurcation curve analytically, I assume that there is a constant
steady state and analyze the linearized system. The Jacobian of the system of growth
(reaction) functions in equations (60) and (61), assuming a spatially constant steady
state, is given by (

γ−1[1− 2P
K
− aSZ

(P+S)2
] γ−1[−aP

P+S
]

γ−1[ −eaSZ
(P+S)2

] γ−1[−aeP
P+S

−m]

)
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Figure 25: Phase diagram of the oscillatory system with exponentially decaying car-
rying capacity. The top left has higher reaction rates or lower stirring rates and a
more homogenous carrying capacity. Parameter combinations in the black region re-
sult in stable limit cycles for both the zooplankton and phytoplankton in the steady
state. Parameter combinations in the white region result in decaying oscillations for
both the zooplankton and phytoplankton in the steady state.

The trace is given by

τ = γ−1[1− 2P

K
− aSZ

(P + S)2
− aeP

P + S
−m] (63)

At a co-existence steady-state (P ∗, Z∗), there exists a positive solution to

γ−1[(1− P ∗

K
)− a Z∗

P ∗ + S
] = 0 (64)

γ−1[ea
P ∗

P ∗ + S
−m] = 0 (65)

Using equation (65) to simplify equation (63), I get

τ = γ−1[1− 2P ∗

K
− aSZ∗

(P ∗ + S)2
] (66)

Then I rearrange equation (64) to become 1 − P
K

= aZ
P+S

and substitute into
equation (66) and simplify to get

τ = γ−1[
P ∗

K(P ∗ + S)
(K − S − 2P ∗)] (67)
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The bifurcation curve is defined by the values of K, the bifurcation parameter
in all simulations, for which the trace is zero. This can happen when K = S. The
co-existence steady state is stable (decaying oscillations) when K < S, when K > S,
a Hopf bifurcation and then a stable limit cycle is possible.

The effective carrying capacity can be calculated for each combination of λ and
γ and a given S to determine if stable limit cycles are possible as long as P begins
small and dP

dt
> 0. For example, compare figure 25 to figure 19. Therefore, the

ratio between the mixing rate and the reaction rate, γ, is a bifurcation parameter for
this system. All simulations presented in figure 25 had spatially averaged carrying
capacities above 0.6. Given S = 0.3, the value used for all simulations, none would
have passed the bifurcation point without mixing.

6.2 Discussion

The set of results that investigate the predator-prey dynamics represented by a
two dimensional non-linear system draw on principles of non-linear coupled oscillators.
Combining the results from the logistic growth (phytoplankton and nutrients only)
and the three dimensional system that had oscillations (nutrients, phytoplankton,
and zooplankton) revealed that Da acts as a bifurcation parameter by modifying the
effective carrying capacity of the system, which has carrying capacity as a bifurcation
parameter in the non-turbulent case. With faster stirring, phytoplankton never have
time to reach equilibrium, so the mean equilibrium population is below the arithmetic
spatial average of carrying capacity. This link through plankton biomass between the
dilution-recoupling hypothesis and the critical turbulence hypothesis suggests a that
merging the two hypotheses could produce fruitful results in relation to the timing
and dynamics of plankton blooms. Even the simple biological models used in section
5 when combined with spatially in homogenous growth and turbulence generate com-
plicated dynamics. One question to be explored further is that of the interactions by
zooplankton with spatially and temporally variable phytoplankton [31]. In this model,
the phytoplankton are continuously out of equilibrium. Does suppression of phyto-
plankton by predation depend on the variance in phytoplankton concentration (figure
18)? Do bloom dynamics depend on the response time of zooplankton to changes in
phytoplankton population [1,15]? Answering these questions could provide a unified
framework that incorporates top-down and bottom-up forcing of productivity during
plankton blooms. Models such as those used in this work in which different forcing
parameters can be separately investigated are particularly well-suited to developing
such a framework.

7 Conclusion

The results presented in this paper have possible implications for global ocean
productivity. One major challenge in observational biological oceanography is linking
surface chlorophyll measurements from satellite ocean color sensors to mixed layer
productivity. Turbulent mixing is one control on the depth distribution of a bloom.

47



If light is the limiting resource, slow mixing can create overall higher productivity,
and particularly high productivity at the ocean surface, while fast mixing will gen-
erate more uniform productivity throughout the mixed layer. Including the effects
of turbulent mixing on phytoplankton in biogeochemical models could improve the
accuracy of models of bloom formation. Moreover, I have suggested integrating the
effects of turbulence on both light exposure and predator exposure for a more thor-
ough understanding of bottom up and top down drivers of bloom formation.

The modeling and analytic techniques developed and utilized in this paper could
be used to analyze other theories of bloom formation and for an even more thor-
ough description of the population dynamics that emerge from current hypotheses for
bloom formation. The greatest strength of this method was the ability to separately
examine each of the physical and biological drivers of bloom formation. In contrast
to many previous studies of the critical depth and critical turbulence hypotheses,
which used one dimensional simulations, I used a two dimensional domain for this
simulation to demonstrate that chaotic advection and diffusion have different effects
on bloom formation. This was possible because the exact-Lagrangian model I used
can be parameterized to have a range of diffusion strengths, including no diffusion.
More careful analysis of particular two dimensional flow features such as confluence
and diffluence and of the degree of randomness in the flow field (represented by the
non-dimensional t∗) could also yield insight into population dynamics.
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